

SOFTWARE
PORTING GUIDE

SLiM-SH430UH(USB 2.0_Linux)

Structured Light Module System
with 3D Sensing IC
Preliminary version 01 April, 2021

ensing IC
Temporary version 01 March, 2021

(DOC No. SLiM-SH430UH-SWPG(USB 2.0_Linux))

(DOC No. SLiM-SH430UH-SWPG(USB_Windows))

USB2.0_Windows USB2.0_Windows

-P.2- Himax Confidential

 This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed
in whole or in part without prior written permission of Himax.

April, 2021

SLiM-SH430UH(USB 2.0_Linux)

Structured Light Module System
with 3D Sensing IC

Revision History

Revision History

April, 2021

Version Date Description of changes

01 2021/04/25 New setup.

USB2.0_Windows USB2.0_Windows

-P.3- Himax Confidential

 This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed
in whole or in part without prior written permission of Himax.

April, 2021

SLiM-SH430UH(USB 2.0_Linux)

Structured Light Module System
with 3D Sensing IC

List of Contents

Revision History

April, 2021

1. System Block Diagram .. 5
2. Video Streaming Information .. 7

2.1. Video frame sequence ... 7
2.2. Video streaming settings for opening UVC device ... 9

3. Himax UVC Library API Call Flow and Usage ... 10
3.1. UVC library API call flow .. 10
3.2. UVC library API usage ... 11

4. Himax Camera Test App Example Code .. 21
4.1. Himax camera test app example code ... 21
4.2. Screenshot of example code .. 21

USB2.0_Windows USB2.0_Windows

-P.4- Himax Confidential

 This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed
in whole or in part without prior written permission of Himax.

April, 2021

SLiM-SH430UH(USB 2.0_Linux)

Structured Light Module System
with 3D Sensing IC

List of Figures

Revision History

April, 2021

Figure 1.1: System block diagram.. 5
Figure 1.2: SLiM-SH430UH USB Dongle physical pictures ... 6
Figure 2.1: Video frame sequence ... 7
Figure 2.2: NIR pixel format representation ... 8
Figure 2.3: Depth pixel format representation .. 8
Figure 4.1: Screenshot of example code ... 21

USB2.0_Windows USB2.0_Windows

-P.5- Himax Confidential

 This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed
in whole or in part without prior written permission of Himax.

April, 2021

SLiM-SH430UH(USB 2.0_Linux)

Structured Light Module System
with 3D Sensing IC

Preliminary Version 01

Revision History

April, 2021

1. System Block Diagram

SLiM-SH430UH USB Dongle would be connected to x86_64 Linux PC with USB (USB

2.0 High Speed) micro-B to Type-A cable as the below diagram:

Figure 1.1: System block diagram

Host (x86_64 Linux PC)

Kernel space (Linux)

user space

USB camera app

libuvc

USB 2.0 cable

libusb

Device
Himax SLiM-SH430UH

USB Dongle

Type-A

micro-B

-P.6- Himax Confidential

 This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed
in whole or in part without prior written permission of Himax.

April, 2021

SOFTWARE PORTING GUIDE Preliminary V01

SLiM-SH430UH(USB 2.0_Linux)
Structured Light Module System with 3D Sensing IC

Figure 1.2: SLiM-SH430UH USB Dongle physical pictures

In this case, we will provide a prebuilt shared library “libuvc” and a UVC camera
sample code “test.c” for user reference.

More library function call descriptions and porting details will be described in later
sections.

-P.7- Himax Confidential

 This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed
in whole or in part without prior written permission of Himax.

April, 2021

SOFTWARE PORTING GUIDE Preliminary V01

SLiM-SH430UH(USB 2.0_Linux)
Structured Light Module System with 3D Sensing IC

 2. Video Streaming Information

2.1. Video frame sequence

SLiM-SH430UH Camera module simultaneously provides NIR (Near-Infrared Radiation)
frame and Depth frame in the same video streaming, those two types of frames were
arranged in interlaced frame sequence and looping, e.g., if 1st frame is NIR frame,
then 2nd frame is Depth frame, 3rd frame is NIR frame, 4th frame is Depth frame, ...,
and so on. About this mode, we also call it “Alternative Mode”, the following diagram is
the visualized representation of the frame sequence:

Figure 2.1: Video frame sequence

UVC video streaming
#1

(NIR/Depth)

UVC video streaming
#2

(RGB)

YUV2 YUV2 YUV2 YUV2 YUV2 YUV2

Time

NIR
frame

Depth
frame

NIR
frame

Depth
frame

NIR
frame

Depth
frame

Time

-P.8- Himax Confidential

 This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed
in whole or in part without prior written permission of Himax.

April, 2021

SOFTWARE PORTING GUIDE Preliminary V01

SLiM-SH430UH(USB 2.0_Linux)
Structured Light Module System with 3D Sensing IC

 ⚫ First UVC video streaming interface, which contains the interlaced NIR/Depth

frames, supports two resolutions, 1280x800@30fps and 640x400@30fps.

◼ NIR pixel format is raw8x2 with 10-bit effective value presents the relative

luminance.

Pixel format of 2D NIR [16-bit data / 10-bit valid]

MSByte LSByte

b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0

b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 x x x x x x

Figure 2.2: NIR pixel format representation

◆ Each NIR 10-bit pixel data would be received as 2 bytes (16-bit) in little endian

byte order with zero-padding in least-significant 6-bit. So, the user may need
to do right-shifting 6-bit on every pixel to get the correct range of NIR
luminance they want.

◼ Depth pixel format is raw8x2 with 16-bit (Q12.4) effective value presents the

absolute distance (Unit: 1/16 mm).

Pixel format of 3D Depth [16-bit data / Q12.4]

MSByte LSByte

b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0

b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 d3 d2 d1 d0

12-bit integer 4-bit fraction

Figure 2.3: Depth pixel format representation

◆ Each depth 16-bit (Q12.4) pixel data would be received as 2 bytes (16-bit) in

little endian byte order which contains most-significant 12-bit binary integer and
least-significant 4-bit binary fraction. So, the user may need to do right-shifting
4-bit on every pixel if user want the integer part only.

⚫ Second UVC video streaming interface on the same UVC video device as
NIR/Depth, which contains RGB frame, supports two resolutions,
1280x800@15fps and 640x480@30fps. And, the RGB pixel format is YUYV (YUV2

422 packed).

◼ Beware of the RGB frame image may be rotated 180° relative to NIR/Depth

frame image.

-P.9- Himax Confidential

 This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed
in whole or in part without prior written permission of Himax.

April, 2021

SOFTWARE PORTING GUIDE Preliminary V01

SLiM-SH430UH(USB 2.0_Linux)
Structured Light Module System with 3D Sensing IC

 2.2. Video streaming settings for opening UVC device

A. User must open NIR/Depth sensor on the first video streaming interface on the

UVC device by requiring the target video format/resolution as
“1280x801@30fps,YUYV” or “640x401@30fps,YUYV” on the UVC video
streaming interface #1. Please, be aware that the captured frame size is different
from image presentation size. Open camera with this video setting is the criterion to
access the correct video streaming of this UVC device.

B. User must open RGB sensor on the second video streaming interface on the same
UVC device as NIR/Depth by requiring the target video format/resolution as
“1280x801@15fps,YUYV” or “640x481@30fps,YUYV” on the UVC video
streaming interface #2. Please, be aware that the captured frame size is different
from image presentation size. Open camera with this video setting is the criterion to
access the correct video streaming of this UVC device.

Note: (1) If opened video streaming on interface #1 or #2, with HD (1280x801) resolution, the real frame rate will be about

6~7 fps. This situation is caused by the limitation of USB 2.0 bandwidth.

-P.10- Himax Confidential

 This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed
in whole or in part without prior written permission of Himax.

April, 2021

SOFTWARE PORTING GUIDE Preliminary V01

SLiM-SH430UH(USB 2.0_Linux)
Structured Light Module System with 3D Sensing IC

 3. Himax UVC Library API Call Flow and Usage

In this section, we will see what the call flow is and how to use the UVC library. In
addition to the vanilla libuvc, Himax added some custom APIs for frame decoding,
sensor info reading, sensor-related controls, and, some utility functions.

3.1. UVC library API call flow

Generally, the API call flow of Himax-customized libuvc is similar to the vanilla libuvc.

⚫ Open & Start device procedure: Init → find device → open device → configure

format/size → start streaming...
⚫ Stop & Close device procedure: Stop streaming → close → unref device → exit.

Due to two UVC video streaming interfaces - NIR/Depth and RGB - are on the same
UVC device, user only need to call the uvc_open() API once to get only one UVC
device handle, instead of two. And, then user can get two UVC stream control blocks
for NIR/Depth and RGB video streamings individually by calling the
uvc_get_stream_ctrl_format_size_ifno() API twice with different arguments, which is
Himax-customized variant API of the vanilla uvc_get_stream_ctrl_format_size() API
plus specifying the video streaming interface number.

⚫ For NIR/Depth video streaming: uvc_get_stream_ctrl_format_size_ifno(devh,

&nir_ctrl, UVC_FRAME_FORMAT_YUYV, 640, 401, 30, 1);
⚫ For RGB video streaming: uvc_get_stream_ctrl_format_size_ifno(devh, &rgb_ctrl,

UVC_FRAME_FORMAT_YUYV, 640, 481, 30, 2);
◼ The last argument 1 or 2 is used to specify the video streaming interface number

we wanted.

Additionally, Himax already pre-parsed the NIR/Depth frames in the first UVC video
streaming, and registered in different frame callback functions by calling
uvc_start_streaming_multi_cb() API, which is Himax-customized multi-callback
variant API of the vanilla uvc_start_streaming() API. In consequence, NIR frame and
depth frame will be placed in different frame buffer of dedicated user frame callback
functions.

⚫ For NIR/Depth video streaming: uvc_start_streaming_multi_cb(devh, &nir_ctrl,

UVC_FRAME_FORMAT_YUYV, nir_cb, NULL, depth_cb, NULL, dot_cb, NULL, 0);
◼ nir_cb is the user frame callback function for NIR frame, and so on.

Furthermore, Himax SLiM-SH430UH camera device supports dynamically changing
two resolution settings between stop-streaming and start-streaming step, no need to
close and open device again.

⚫ Stop streaming → configure another format/size → start streaming.

Please check the example code test.c source file for more details.

-P.11- Himax Confidential

 This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed
in whole or in part without prior written permission of Himax.

April, 2021

SOFTWARE PORTING GUIDE Preliminary V01

SLiM-SH430UH(USB 2.0_Linux)
Structured Light Module System with 3D Sensing IC

 3.2. UVC library API usage

A. uvc_init(&ctx, NULL);

Initial a UVC context.

⚫ If it initialized successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s

failed to initialize a USB context for UVC.
⚫ 2nd argument usb_ctx is set to NULL for using UVC library owned USB context.

B. uvc_find_device(ctx, &dev, 0x2AAD, 0x6373, NULL);

Find the first UVC device which matches the VID:PID specified in third and fourth
arguments.

⚫ This function need an available UVC context, so it must be called after uvc_init()

function called successfully.
⚫ If it found successfully, then it’ll return UVC_SUCCESS (0), else if device not

found, then it’ll return UVC_ERROR_NO_DEVICE (-4), otherwise it’s failed to
get any UVC device from USB device list.

⚫ 1st argument ctx is the UVC context initialized by uvc_init() function.
⚫ 2nd argument dev will output the UVC device reference if found, or NULL if not

found.
⚫ 3rd and 4th arguments are device’s vid and pid specified by user.

◼ SLiM-SH430UH camera device have only one dedicated UVC device ID,
which its VID:PID is 2AAD:6373 (in hexadecimal), please do not change this
value. Both NIR/Depth and RGB video streaming interfaces are on the same
UVC device.

⚫ 5th argument is device’s sn, currently we set to NULL for ignore this condition as
us propose.

C. uvc_open(dev, &devh);

Open the specified UVC device and return the UVC device handle.

⚫ This function need an available UVC device, so it must be called after

uvc_find_device() function called successfully.
⚫ If it opened successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s

failed to open the UVC device.
⚫ 1st argument dev is the UVC device to be opened.
⚫ 2nd argument devh will output the UVC device handle reference once it opened

successfully.

-P.12- Himax Confidential

 This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed
in whole or in part without prior written permission of Himax.

April, 2021

SOFTWARE PORTING GUIDE Preliminary V01

SLiM-SH430UH(USB 2.0_Linux)
Structured Light Module System with 3D Sensing IC

 D. uvc_hx_set_frame_mode(devh, mode_id);

Select Himax frame mode function for changing the frame sequence of the first
UVC video streaming interface for NIR/depth video streaming (Not applied to the

second UVC video streaming interface for RGB video streaming), instead of the default
2D(NIR)/(3D) Depth alternative mode.

⚫ This function need an available UVC device handle, so it must be called after

uvc_open() function called successfully.
⚫ If it set successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed to

set.
⚫ 1st argument devh is the UVC device handle to be read.
⚫ 2nd argument mode_id value is defined in the enum hx_frame_mode_select in

the libuvc_hx.h header file, currently only support following modes.
◼ HX_FRAME_MODE_SELECT_ONLY_NIR (NIR only)

◼ HX_FRAME_MODE_SELECT_ONLY_DEPTH (Depth only)
◼ HX_FRAME_MODE_SELECT_ALT_NIR_DEPTH (Default 2D(NIR)/(3D) Depth

alternative mode)

E. uvc_hx_get_frame_mode(devh, mode_id);

Get NIR/Depth video streaming after selecting frame mode via
uvc_hx_set_frame_mode().

⚫ This function need an available UVC device handle, so it must be called after

uvc_open() function called successfully.
⚫ If it set successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed to

set.
⚫ 1st argument devh is the UVC device handle to be read.
⚫ 2nd argument mode_id value is a pointer pointed to 8-bit integer, presents as a

positive integer, likes “4” or similar values. The mode_id value is defined in the
enum hx_frame_mode_select in the libuvc_hx.h header file, currently only
support following modes.

F. uvc_hx_get_hv2_fw_version(devh, &hv2_fw_version);

Read the HV2 FW Version data from Himax UVC camera device.

⚫ This function need an available UVC device handle, so it must be called after

uvc_open() function called successfully.
⚫ If it read successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed to

read.
⚫ 1st argument devh is the UVC device handle to be read.
⚫ 2nd argument hv2_fw_version is a pointer pointed to a Himax custom data

structure hx_hv2_fw_version_t, which contains the chip_id/version_major
/data(YYMMDD)/version_minor/customer_id fields, please check the
libuvc_hx.h header file for more details.

-P.13- Himax Confidential

 This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed
in whole or in part without prior written permission of Himax.

April, 2021

SOFTWARE PORTING GUIDE Preliminary V01

SLiM-SH430UH(USB 2.0_Linux)
Structured Light Module System with 3D Sensing IC

 G. uvc_hx_get_build_type(devh, &build_type);

Read the build type from Himax UVC camera device.

⚫ This function need an available UVC device handle, so it must be called after

uvc_open() function called successfully.
⚫ If it read successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed to

read.
⚫ 1st argument devh is the UVC device handle to be read.
⚫ 2nd argument build_type is a pointer pointed to a 16-bit integer, presents as four

hexadecimals string, likes “D1C1” or similar values; otherwise “0xFFFF” (16-bit

with all “ones”) means the UVC device’s build type hasn’t been provisioned yet.

H. uvc_hx_get_serial_number(devh, &serial_number);

Read the serial number (SN) from Himax UVC camera device.

⚫ This function need an available UVC device handle, so it must be called after

uvc_open() function called successfully.
⚫ If it read successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed to

read.
⚫ 1st argument devh is the UVC device handle to be read.
⚫ 2nd argument serial_number is a pointer pointed to a 32-bit integer, presents as

a positive integer, likes “14” or similar values; otherwise “0xFFFFFFFF” (32-bit

with all “ones”) means the UVC device’s serial number hasn’t been provisioned
yet.

-P.14- Himax Confidential

 This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed
in whole or in part without prior written permission of Himax.

April, 2021

SOFTWARE PORTING GUIDE Preliminary V01

SLiM-SH430UH(USB 2.0_Linux)
Structured Light Module System with 3D Sensing IC

 I. uvc_hx_get_intrinsic_extrinsic_matrices(devh, &cam_matrices, 0-or-1);

Read the camera’s intrinsic and extrinsic parameter matrices from Himax UVC
camera device.

⚫ This function need an available UVC device handle, so it must be called after

uvc_open() function called successfully.
⚫ If it read successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed to

read.
⚫ 1st argument devh is the UVC device handle to be read.
⚫ 2nd argument cam_matrices is a pointer pointed to a Himax custom data

structure hx_cam_intrinsic_extrinsic_matrices_t, which contains the target NIR
sensor width/height w_d/h_d, target RGB sensor width/height w_r/h_r, NIR
sensor’s intrinsic matrix Kd[3][3], and it’s inverse matrix Kd_[3][3], RGB sensor’s
intrinsic matrix Kr[3][3], rotation component R[3][3] and translation component
T[3] of the extrinsic matrix translated from NIR to RGB, please check the
libuvc_hx.h header file for more details.

⚫ 3rd argument require_scaling is used to select right camera intrinsic/extrinsic
parameter matrices for different target video resolution:
0: Output camera matrices of HD resolution,
(NIR/Depth: 1280x800, RGB:1280x800),

 and, set NIR/Depth frame size w_d/h_d to 1280/800,
 and, set RGB frame size w_r/h_r to 1280/800.

1: Output camera matrices of VGA resolution,
 (NIR/Depth: 640x400, RGB: 640x480) which is ½ downscaling,
 and, set NIR/Depth frame size w_d/h_d to 640/400,
 and, set RGB frame size w_r/h_r to 640/480.
⚫ Note: This function will also do pre-calculating the inverse matrix of NIR sensor’s

intrinsic matrix (Kd_[3][3]), that can be used in another Himax utility function
uvc_hx_rectified_coordinate() API, which is used for converting NIR to RGB
coordinates.

-P.15- Himax Confidential

 This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed
in whole or in part without prior written permission of Himax.

April, 2021

SOFTWARE PORTING GUIDE Preliminary V01

SLiM-SH430UH(USB 2.0_Linux)
Structured Light Module System with 3D Sensing IC

 J. uvc_hx_rectified_coordinate(&cam_matrices, depth, x_nir, y_nir, &x_rgb,

&y_rgb);

Himax utility function for converting a coordinate of portrait image from NIR to RGB
image coordinate, input the NIR sensor’s image coordinate (xnir, ynir) and depth
value Znir, and output the RGB sensor’s image coordinate (xrgb, yrgb).

⚫ This function required SLiM-SH430UH NIR & RGB camera sensors’ intrinsic

and extrinsic matrices (Kd/Kr/R/T) and the pre-calculated inverse matrix of NIR
sensor’s intrinsic matrix (Kd_), so it must be called after
uvc_get_hx_cam_intrinsic_extrinsic_matrices() function called successfully.

⚫ Since, each Himax SLiM-SH430UH camera device has stored different
calibrated intrinsic/extrinsic matrices data to each other. Do NOT use the same
camera matrices data on the mismatch camera device.

⚫ If it computed successfully, then it’ll return 0, otherwise it’s failed to compute.
⚫ 1st argument cam_matrices is a pointer pointed to a Himax custom data

structure hx_cam_intrinsic_extrinsic_matrices_t, which contains the target NIR
sensor width/height w_d/h_d, target RGB sensor width/height w_r/h_r, NIR
sensor’s intrinsic matrix Kd[3][3], and it’s inverse matrix Kd_[3][3], RGB sensor’s
intrinsic matrix Kr[3][3], rotation component R[3][3] and translation component
T[3] of the extrinsic matrix translated from NIR to RGB, please check the
libuvc_hx.h header file for more details.

⚫ 2nd argument depth is input the NIR sensor’s depth value Znir.
⚫ 3rd and 4th arguments x_nir and x_nir are input the NIR sensor’s image

coordinate (xnir, ynir).
⚫ 5th and 6th arguments x_rgb and y_rgb are output the RGB sensor’s image

coordinate (xrgb, yrgb).

-P.16- Himax Confidential

 This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed
in whole or in part without prior written permission of Himax.

April, 2021

SOFTWARE PORTING GUIDE Preliminary V01

SLiM-SH430UH(USB 2.0_Linux)
Structured Light Module System with 3D Sensing IC

 K. // for NIR/Depth

uvc_get_stream_ctrl_format_size_ifno(devh, &nir_ctrl,
UVC_FRAME_FORMAT_YUYV, 1280-or-640, 801-or-401, 30, 1);
// for RGB
uvc_get_stream_ctrl_format_size_ifno(devh, &rgb_ctrl,
UVC_FRAME_FORMAT_YUYV, 1280-or-640, 801-or-481, 15-or-30, 2);

Get a negotiated video streaming control block with some common parameter user
specified, such as, frame format, frame width/height, frame rate (fps), plus video
streaming interface number. This is a Himax-customized variant API of the vanilla
uvc_get_stream_ctrl_format_size() API plus specifying the video streaming
interface number.

⚫ This function need an available UVC device handle, so it must be called after

uvc_open() function called successfully.
⚫ If it configured successfully, then it’ll return UVC_SUCCESS (0), otherwise it’ll

return UVC_ERROR_INVALID_MODE (-51) means it’s failed to configure.
⚫ 1st argument devh is the UVC device handle to be read.
⚫ 2nd argument ctrl is a pointer pointed to the output result UVC stream control

block.
⚫ 3rd argument format is the frame format.
⚫ 4th and 5th arguments width and height are the frame size.
⚫ 6th argument fps is the frame rate per second.
⚫ 7th argument ifno is the UVC video streaming interface number.

L. uvc_start_streaming(devh, &rgb_ctrl, rgb_cb, NULL, 0);

Start video streaming with setting up a callback function rgb_cb for RGB frame.

⚫ This function need an available UVC device handle and UVC stream control

block, so it must be called after uvc_get_stream_ctrl_format_size() or
uvc_get_stream_ctrl_format_size_ifno() function called successfully.

⚫ If it started successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed
to start.

⚫ 1st argument devh is the UVC device handle to be read.
⚫ 2nd argument ctrl is a pointer pointed to the UVC stream control block.
⚫ 3rd argument cb is the user frame callback function to be registered, and the

callback frame will be placed in the 1st argument (uvc_frame_t *frame).
⚫ 4th argument user_ptr is a pointer that will be placed in the 2nd argument (void

*ptr) of the user callback function cb(). Set this to NULL if unused.
⚫ 5th argument flags is unused and undefined. Set this to zero.

-P.17- Himax Confidential

 This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed
in whole or in part without prior written permission of Himax.

April, 2021

SOFTWARE PORTING GUIDE Preliminary V01

SLiM-SH430UH(USB 2.0_Linux)
Structured Light Module System with 3D Sensing IC

 M. uvc_start_streaming_multi_cb(devh, &ctrl, nir_cb, NULL, depth_cb, NULL,

dot_cb, NULL, 0);

Start video streaming with setting up three callback functions
nir_cb/depth_cb/dot_cb for NIR/Depth/Dot frames, respectively. This is a
Himax-customized variant API of the vanilla uvc_start_streaming() API with
multiple user frame callback functions registration. User does not need to figure out
which frame type is at this frame, it has already been parsed.

⚫ This function need an available UVC device handle and UVC stream control

block, so it must be called after uvc_get_stream_ctrl_format_size() or
uvc_get_stream_ctrl_format_size_ifno() function called successfully.

⚫ If it started successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed
to start.

⚫ 1st argument devh is the UVC device handle to be read.
⚫ 2nd argument ctrl is a pointer pointed to the UVC stream control block.
⚫ 3rd/5th/7th arguments nir_cb/depth_cb/dot_cb are the user frame callback

functions to be registered, and the callback frame will be placed in the 1st
argument (uvc_frame_t *frame).

⚫ 4th/6th/8th arguments nir_user_ptr/depth_user_ptr/dot_user_ptr are a pointer that
will be placed in the 2nd argument (void *ptr) of the corresponding user callback
function xxx_cb(). Set this to NULL if unused.

⚫ 5th argument flags is unused and undefined. Set this to zero.

N. xxx_cb(uvc_frame_t *frame, void *ptr);

User frame callback function of nir_cb/depth_cb/dot_cb/rgb_cb.

⚫ 1st argument frame is the UVC frame data (uvc_frame_t *) received.
⚫ 2nd argument ptr is a user pointer registered at uvc_start_streaming() or

uvc_start_streaming_multi_cb() function called.
◼ frame → data is the pointer pointed to the video frame data buffer.
◼ frame → data_bytes is the frame size in byte.
◼ frame → width and frame → height are the frame resolution.
◼ frame → step is the length of one line in bytes, it’s related to width and

format.
⚫ Please check the example code “test.c” source file for more details.

O. uvc_y16_shr(in, out, shr);

Right-shifting N-bits on every single pixel of the input Y16 frame and output the
result in output Y16 frame.

⚫ This function is typically been called in user frame callback function cb(), and

used to process the pixel data.
⚫ If it run successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed to

run.
⚫ 1st and 2nd arguments in/out are pointers pointed to input/output Y16 frames.
⚫ 3rd argument shr specify the number of bits to be shifted.

-P.18- Himax Confidential

 This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed
in whole or in part without prior written permission of Himax.

April, 2021

SOFTWARE PORTING GUIDE Preliminary V01

SLiM-SH430UH(USB 2.0_Linux)
Structured Light Module System with 3D Sensing IC

 P. uvc_y16_shl(in, out, shl);

Left-shifting N-bits on every single pixel of the input Y16 frame and output the
result in output Y16 frame.

⚫ This function is typically been called in user frame callback function cb(), and

used to process the pixel data.
⚫ If it run successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed to

run.
⚫ 1st and 2nd arguments in/out are pointers pointed to input/output Y16 frames.
⚫ 3rd argument shl specify the number of bits to be shifted.

Q. uvc_y16_to_y8(in, out, effective_bit_alignment);

Convert from Y16 frame to Y8 frame (dropped the least-significant bits) with
specified zero-padding alignment for NIR frame.

⚫ This function is typically been called in user frame callback function cb(), and

used to process the pixel data.
⚫ If it run successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed to

run.
⚫ 1st and 2nd arguments in and out are the pointers pointed to the input Y16 frame

and output Y8 frame, respectively.
⚫ 3rd argument effective_bit_alignment indicates NIR effective 10-bit value is left-

or right-aligned, the available value is defined as below.
◼ HX_EFFECTIVE_BIT_ALIGNMENT_LEFT (0): NIR effective 10-bit value is

left-aligned (zero-padding on least-significant 6-bit).
◼ HX_EFFECTIVE_BIT_ALIGNMENT_RIGHT (1): NIR effective 10-bit value is

right-aligned (zero-padding on most-significant 6-bit).

R. uvc_y8_to_bgr(in, out);
uvc_y8_to_rgb(in, out);

Convert from Y8 frame to gray BGR/RGB frame for NIR frame.
⚫ This function is typically been called in user frame callback function cb(), and

used to process the pixel data.
⚫ If it run successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed to

run.
⚫ 1st and 2nd arguments in and out are the pointers pointed to the input Y8 frame

and output BGR/RGB frame, respectively.

-P.19- Himax Confidential

 This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed
in whole or in part without prior written permission of Himax.

April, 2021

SOFTWARE PORTING GUIDE Preliminary V01

SLiM-SH430UH(USB 2.0_Linux)
Structured Light Module System with 3D Sensing IC

 S. uvc_any2bgr(in, out);

uvc_any2rgb(in, out);

Convert from any type frame to BGR/RGB frame for NIR and RGB (YUV) frame.

⚫ This function is typically been called in user frame callback function cb(), and

used to process the pixel data.
⚫ If it run successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed to

run.
⚫ 1st and 2nd arguments in and out are the pointers pointed to the input frame and

output BGR/RGB frame, respectively.

Note: (1) This function implied uvc_y8_to_bgr() or uvc_y8_to_rgb() function if input is Y8 frame.

T. uvc_y16_to_depth_colormap_bgr(in, out, shr);

uvc_y16_to_depth_colormap_rgb(in, out, shr);

Convert from RAW16 depth frame to BGR/RGB color map frame for depth frame
used only.

⚫ This function is typically been called in user frame callback function cb(), and

used to process the pixel data.
⚫ If it run successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed to

run.
⚫ 1st and 2nd arguments in and out are the pointers pointed to the input Y16 frame

and output BGR/RGB frame, respectively.
⚫ 3rd argument shr specify the number of bits to be right-shifted on every depth

pixel.

Note: (1) Since the internal color map conversion only accepted input depth range from 0 ~ 1023, so user must
tune this value and specify it to get correct depth color map.

U. uvc_hx_y16_rotate(in, out, mode);

uvc_hx_bgr_rotate(in, out, mode);
uvc_hx_rgb_rotate(in, out, mode);

Rotate Y16/BGR/RGB frame by 0/90/180/270 degrees

⚫ This function is typically been called in user frame callback function cb(), and

used to process the pixel data.
⚫ If it run successfully, then it’ll return UVC_SUCCESS (0), otherwise it’s failed to

run.
⚫ 1st and 2nd arguments in and out are the pointers pointed to the input Y16 frame

and output BGR/RGB frame, respectively.
⚫ 3rd argument mode value is defined in the enum uvc_hx_rotation_mode in the

libuvc_hx.h header file, currently only support following modes.

-P.20- Himax Confidential

 This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed
in whole or in part without prior written permission of Himax.

April, 2021

SOFTWARE PORTING GUIDE Preliminary V01

SLiM-SH430UH(USB 2.0_Linux)
Structured Light Module System with 3D Sensing IC

 V. uvc_stop_streaming(devh);

Once user done the video streaming, use this function to stop the UVC video
streaming.

⚫ This function need an available UVC device handle and its video streaming had

started, so it must be called after uvc_start_streaming() or
uvc_start_streaming_multi_cb() function called successfully.

⚫ It has no return value.
⚫ 1st argument devh is the UVC device handle to be stopped.

W. uvc_close(devh);

Close the UVC device.
⚫ This function need an available UVC device handle, so it must be called after

uvc_open() function called successfully.
⚫ It has no return value.
⚫ 1st argument devh is the UVC device handle to be closed.

X. uvc_unref_device(dev);

Decrease the reference count for a UVC device which was increased after found or
opened device. This should be called after close UVC device.
⚫ This function need an available UVC device, so it must be called after

uvc_find_device() function called successfully.
⚫ It has no return value.
⚫ 1st argument dev is the UVC device to be unreferred.

Y. uvc_exit(ctx);

Close the initialized UVC context and shutting down any active UVC device.
⚫ This function need an available UVC context, so it must be called after uvc_init()

function called successfully.
◼ It has no return value.
◼ 1st argument ctx is the UVC context to be uninitialized.

-P.21- Himax Confidential

 This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed
in whole or in part without prior written permission of Himax.

April, 2021

SOFTWARE PORTING GUIDE Preliminary V01

SLiM-SH430UH(USB 2.0_Linux)
Structured Light Module System with 3D Sensing IC

 4. Himax Camera Test App Example Code

4.1. Himax camera test app example code

The example code test.c app for the libuvc used OpenCV to draw the window for
video frame.

About the more details of function call usage, please refer to the example code test.c
source file.

4.2. Screenshot of example code

Running on the x86_64 PC with Ubuntu Linux 18.04 operating system.

Figure 4.1: Screenshot of example code

